# Molar Group Contributions to Polymer Flammability

## Richard N. Walters,<sup>1</sup> Richard E. Lyon<sup>2</sup>

<sup>1</sup>Galaxy Scientific Corporation, 3120 Fire Road, Egg Harbor Township, New Jersey 08234 <sup>2</sup>Fire Safety Section AAR-440, Airport and Aircraft Safety Research and Development, William J. Hughes Technical Center, Federal Aviation Administration, Atlantic City International Airport, New Jersey 08405

Received 8 March 2002; accepted 26 April 2002

**ABSTRACT:** The specific heat-release rate is the molecular-level fire response of a burning polymer. The Federal Aviation Administration obtains the specific heat-release rate of milligram samples by analyzing the oxygen consumed by the complete combustion of the pyrolysis gases during a linear heating program. Dividing the specific heat-release rate (W/g) by the rate of the temperature rise (K/s) of a sample during a test gives a material fire parameter with the units (J/g K) and significance of the heat (release) capacity. The heat-release capacity appears to be a true material property that is rooted in the chemical structure of the

## INTRODUCTION

The additivity of molar group contributions to the physical and chemical properties of polymers is the basis of an empirical methodology for relating the chemical structure to the polymer properties.<sup>1–3</sup> The early work in this area<sup>4</sup> focused on calculating the heats of combustion from the individual atoms comprising small molecules. However, performing calculations for large (polymer) molecules based on the interactions of the individual atoms can be very difficult.<sup>2</sup> A simpler approach to correlating the polymer chemical structure to the properties is to group the atomic contributions into characteristic structural elements (e.g., -CH<sub>3</sub>), determine the value of the group contribution to the property of interest parametrically, and add these group contributions according to their molar fractions in the polymer repeat unit. This method has been used to relate the chemical structures of polymers to their thermal, chemical, optical, and mechanical properties with excellent results.  $^{\ensuremath{\bar{1}}-3}$  Of particular interest in this context is the ability to predict the thermal stability parameters of polymers (pyrolysis activation energy, thermal decomposition temperature, and char/fuel fraction) from additive molar group contributions.<sup>1</sup>

A prerequisite for any structure–property correlation is the ability to identify and reproducibly measure the intrinsic property of interest. In the area of polypolymer and is calculable from additive molar group contributions. Hundreds of polymers of known chemical compositions have been tested to date, providing over 40 different empirical molar group contributions to the heat-release capacity. Measured and calculated heat-release capacities for over 80 polymers agree to within  $\pm 15\%$ , suggesting a new capability for predicting flammability from the polymer chemical structure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 548–563, 2003

Key words: plastics; calculations; thermal properties

mer flammability, no single material property has been correlated with fire performance, nor does any test measure fire performance unambiguously because the burning rate, ignitability, flammability, and heat-release rate are not intrinsic properties. Rather, they are extrinsic quantities resulting from the reaction of a macroscopic polymer sample to severe thermal exposure. Because the sample size in a flammability or fire test is orders of magnitude larger than the chemical process zone,<sup>5–7</sup> heat and mass transfer dominate the fire response. Therefore, an intrinsic material property for use by scientists in designing fire-resistant polymers is not obtainable from standard fire or flammability tests.

Recently, a material fire parameter with the units and significance of the heat-release capacity<sup>5–7</sup> has been identified that appears to be a good predictor of the fire response and flammability of polymers. A quantitative laboratory pyrolysis–combustion method for directly measuring the heat-release capacity has been reported.<sup>8–10</sup> This article provides empirical molar group contributions to the heat-release capacity that allow its calculation from the polymer chemical structure. The relationship between the measured (or calculated) heat-release capacity of a polymer and its fire behavior or flammability is described.

## THEORY

Correspondence to: R. N. Walters (richard.n.walters@tc. faa.gov).

Journal of Applied Polymer Science, Vol. 87, 548–563 (2003) © 2002 Wiley Periodicals, Inc.

The solid-state thermochemistry of flaming combustion<sup>5–7</sup> reveals a material fire parameter that has the units of the heat (release) capacity (J/g K):



Figure 1 Schematic diagram of the pyrolysis-combustion flow calorimeter.

$$\eta_c = \frac{h_c^0 (1-\mu) E_a}{e R T_p^2} \tag{1}$$

The heat-release capacity  $(\eta_c)$  is a combination of the thermal stability and combustion properties, each of which is known to be calculable from additive molar group contributions.<sup>1</sup> The component material properties are the heat of complete combustion of the pyrolysis gases  $[h_c^0(J/g)]$ , the weight fraction of the solid residue after pyrolysis or burning  $[\mu (g/g)]$ , the global activation energy for the single-step mass-loss process or pyrolysis  $[E_a (J/mol)]$ , and the temperature at the peak mass-loss rate  $[T_p (K)]$  in a linear heating program at a constant rate [ $\beta$  (K/s)]. The constants in eq. (1) are the natural number (e) and the gas constant (R). Equation (1) shows the heat-release capacity to be a particular function of the thermal stability and combustion properties, each of which is known to be calculable from additive molar group contributions.<sup>1</sup> Consequently,  $\eta_c$  itself is a material property and should be calculable from the same (or similar) molar groups as the component properties as long as there are no interactions between the chemical structural units. Along with this assumption of group additivity, there is the postulate that for a polymer repeat unit of molar mass *M*, there is a molar heat-release capacity  $[\Psi (J/mol K)]$  whose functional form is eq. (1) but which has thermal stability and combustion properties written as the molar quantities H, V, E, and Y/M in place of  $h_c^0$ ,  $(1 - \mu)$ ,  $E_a$ , and  $T_p$ , respectively. If each chemical group *i* in the polymer adds to the component molar properties according to its molar fraction  $n_i$ in the repeat unit,

$$\Psi = \frac{HVE}{eR(Y/M)^2} = \frac{\left(\sum_i n_i H_i\right) \left(\sum_i n_i V_i\right) \left(\sum_i n_i E_i\right)}{eR\left(\sum_i n_i Y_i/M_i\right)^2} \quad (2)$$

where  $H_i$ ,  $V_i$ ,  $E_i$ ,  $Y_i$ , and  $M_i$  are the molar heat of combustion, molar fraction of fuel, molar activation energy, molar thermal decomposition function,<sup>1</sup> and molar mass of component *i*, respectively. Expanding the summations in eq. (2) and retaining only the non-interacting terms for which  $i = j = k \dots$  (i.e., neglecting terms containing products and quotients with mixed indices), we have the following:

$$\Psi = \sum_{i} n_i \frac{H_i V_i E_i}{e R (Y_i / M_i)^2} = \sum_{i} n_i \Psi_i$$
(3)

Equation (3) shows that there is a molar group contribution to the heat-release capacity  $\Psi_i$  that adds according to its molar fraction in the repeat unit of the polymer. If  $N_i$  and  $M_i$  are the number of moles and the molar mass, respectively, of group *i* in the polymer with the repeat unit molar mass M

$$n_i = \frac{N_i}{\sum_i N_i}$$
 and  $M = \sum_i n_i M_i = \sum_i \frac{N_i}{\sum_i N_i} M_i$ 

then the heat-release capacity on a mass basis is

$$\eta_c = \frac{\Psi}{M} = \frac{\sum_{i} n_i \Psi_i}{\sum_{i} n_i M_i} = \frac{\sum_{i} N_i \Psi_i}{\sum_{i} N_i M_i}$$
(4)

Equations (2)–(4) provide the physical basis for an additive heat-release capacity function, but the values of the molar contributions of chemical groups must be derived empirically (i.e., experimentally). To this end, the heat-release capacities of more than 200 polymers with known chemical structures have been measured with the measurement technique described later, and these experimental values have been used to generate over 40 group contributions.<sup>11,12</sup>

## **EXPERIMENTAL**

## Materials

Polymer samples were unfilled, natural, or virgingrade resins obtained from Aldrich (Milwaukee, WI) and Polysciences, Inc. (Warrington, PA), and research universities or directly from the manufacturers. The oxygen and nitrogen gases used for calibration and testing, obtained from Matheson Gas Products (Bridgeport, NJ), were dry and greater than 99.99% pure.

## Methods

A pyrolysis-combustion flow calorimeter<sup>8-10</sup> was used for all experiments (see Fig. 1). In this device, a pyrolysis probe (Pyroprobe 2000, CDS Analytical, Oxford, PA) is used to thermally decompose milligramsize samples in flowing nitrogen at a controlled heating rate. The samples are heated at a constant rate (typically 4.3 K/s) from a starting temperature that is several degrees below the onset degradation temperature of the polymer to a maximum temperature of 1200 K (930°C). The 930°C final temperature ensures the complete thermal degradation of organic polymers so that the total capacity for heat release is measured during the test and eq. (1) applies. Flowing nitrogen sweeps the volatile decomposition products from the constant-temperature (heated) pyrolysis chamber, and oxygen is added to obtain a nominal composition of 4:1  $N_2/O_2$  before a 900°C furnace is entered for 60 s to effect complete nonflaming combustion. The combustion products (carbon dioxide, water, and possibly acid gases) are then removed from the gas stream with

Ascarite and Drierite scrubbers. The mass flow rate and oxygen consumption of the scrubbed combustion stream are measured with a mass flowmeter and zirconia oxygen analyzer (Panametrics model 350, Waltham, MA), respectively.

The specific heat-release rate ( $\dot{Q}_c$ ) in the pyrolysiscombustion flow calorimeter is determined from oxygen consumption measurements with the assumption that 13.1 kJ of heat is released per gram of diatomic oxygen consumed by combustion.<sup>13–16</sup> Because  $\dot{Q}_c$  is equal to the fractional mass-loss rate multiplied by the heat of complete combustion of the pyrolysis products,

$$\dot{Q}_{c}(t) = \frac{E}{m_{0}} \Delta \dot{O}_{2}(t) = -\frac{h_{c,v}^{0}(t)}{m_{0}} \frac{dm(t)}{dt}$$
(5)

where  $E = 13.1 \pm 0.6 \text{ kJ/g}$  of  $O_2$ ,  $\Delta \hat{O}_2$  is the instantaneous mass consumption rate of oxygen,  $m_0$  is the initial sample mass,  $h_{c,v}^0$  is the instantaneous heat of complete combustion of the volatile pyrolysis products, and dm/dt is the instantaneous mass-loss (fuelgeneration) rate of the sample during the test. The advantage of synchronized oxygen consumption calorimetry for determining the specific heat-release rate is the ease and speed of the method in comparison with the simultaneous measurement of the mass-loss rate of the solid and the heat of combustion of the pyrolysis gases.<sup>17</sup> At  $T_p$ , the specific heat-release rate has an analytical form:<sup>5–7,18</sup>

$$\dot{Q}_{c}^{max} = \frac{E}{m_{0}} \Delta \dot{O}_{2}^{max} = \frac{-h_{c,v}^{0}(t)}{m_{0}} \left[ \frac{dm(t)}{dt} \right]_{max} = h_{c}^{0} \frac{\beta(1-\mu)E_{a}}{eRT_{p}^{2}}$$
(6)



Figure 2 Specific heat-release rates for several polymers measured with the microscale calorimeter.

|                                     | Polym                                | ter Structure an | T/<br>d Values Derived f         | ABLE I<br>rom Pyrolysis-Combustion Flow Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lorimetry                           |                                 |             |               |
|-------------------------------------|--------------------------------------|------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Material (abbreviated name)         | Trade name,<br>manufacturer/supplier | CAS number       | Repeat unit<br>composition       | Repeat unit structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heat release<br>capacity<br>(J/g K) | Total<br>heat release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
| Polyethylene (PE)                   | LDPE Polysciences,<br>Inc            | [9002-88-4]      | C <sub>2</sub> H <sub>4</sub>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1676                                | 41.6                            | 0           | 28.06         |
| Polyoxymethylene                    | Polysciences                         | [9002-81-7]      | $CH_2O$                          | —CH <sub>2</sub> -0—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 169                                 | 14                              | 0           | 30.03         |
| (r.Ow)<br>Polypropylene (PP)        | Polysciences                         | [25085-53-4]     | $C_3H_6$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1571                                | 41.4                            | 0           | 42.08         |
| Poly(vinyl alcohol)<br>(≥99%; PVOH) | Aldrich Chemical Co.,<br>Inc.        | [9002-89-5]      | $C_2H_4O$                        | CH <sub>3</sub><br>—CH <sub>2</sub> -CH—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 533                                 | 21.6                            | 3.3         | 44.03         |
| Poly(ethylene oxide)                | Polysciences                         | [25322-68-3]     | $C_2H_4O$                        | он<br>—сн <sub>2</sub> -сн <sub>2</sub> -о—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 652                                 | 21.6                            | 1.7         | 44.05         |
| Polyisobutylene                     | Aldrich                              | [9003-27-1]      | $C_4H_8$                         | $-CH_2 - CH_3$<br>$-CH_2 - C - CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1002                                | 44.4                            | 0           | 56.11         |
| Poly(vinyl chloride)                | PVC                                  | [9002-86-2]      | $C_2H_3CI$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 138                                 | 11.3                            | 15.3        | 62.48         |
| Poly(vinylidene<br>fluoride)        | PVDF (MW = 120,000),<br>Polysciences | [24937-79-9]     | $C_2H_2F_2$                      | сн <sub>2</sub> -сн2-с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 311                                 | 9.7                             | 5           | 64.02         |
| Polyacrylamide                      | Polysciences                         | [9003-05-8]      | C <sub>3</sub> H <sub>5</sub> NO | $O_{C}$ NH <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104                                 | 13.3                            | 8.3         | 71.08         |
| Poly(acrylic acid)                  | Polysciences                         | [9003-01-4]      | $C_3H_4O_2$                      | —сн <sub>2</sub> -сн —<br>—сн <sub>2</sub> -сн —<br>"с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 165                                 | 12.5                            | 6.1         | 72.06         |
| Poly(vinyl acetate)<br>(PVAc)       | Polysciences                         | [9003-20-7]      | $C_4H_6O_2$                      | 0 0H<br>-CH <sub>2</sub> -CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 313                                 | 19.2                            | 1.2         | 86.09         |
| Poly(methacrylic acid)              | Polysciences (MW =<br>100,000)       | [25087-26-7]     | C4H6O2                           | $\begin{array}{ccc} 0 & CH_3 \\ CH_3 & CH_2 - C \\ - & CH_2 - C \\ & C \\ &$ | 464                                 | 18.4                            | 0.5         | 86.09         |
| Polychloroprene                     | Neoprene, Polysciences               | [9010-98-4]      | C <sub>4</sub> H <sub>5</sub> Cl | $-CH_2$ , $CH_2-CH_2-CH_2-CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 188                                 | 16.1                            | 12.9        | 88.54         |

|                                        |                                        |              | TABLE I                         | Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                 |             |               |
|----------------------------------------|----------------------------------------|--------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Material (abbreviated<br>name)         | Trade name,<br>manufacturer/supplier   | CAS number   | Repeat unit<br>composition      | Repeat unit structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat release<br>capacity<br>(J/g K) | Total<br>heat release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
| Poly(tetrafluoro                       | Aldrich                                | [9002-84-0]  | $C_2F_4$                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                  | 3.7                             | 0           | 100.02        |
| Poly(methyl<br>methacrylate)<br>(PMMA) | Aldrich                                | [9011-14-7]  | $C_5H_8O_2$                     | CH <sub>2</sub> -CH <sub>3</sub><br>CH <sub>2</sub> -C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 514                                 | 24.3                            | 0           | 100.12        |
| Poly(methyl<br>methacrylate)<br>(PMMA) | Polysciences<br>(MW = 75,000)          | [9011-14-7]  | $C_5H_8O_2$                     | 00 00CH3<br>CH3<br>CH2-C<br>06C_0CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 461                                 | 23.2                            | 0           | 100.12        |
| Poly(ethyl acrylate)                   | Polysciences $(MW = 70,000)$           | [9003-32-1]  | $C_5H_8O_2$                     | $-CH_2-CH$<br>$-CH_2-CH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 323                                 | 22.6                            | 0.3         | 100.12        |
| Polymethacrylamide                     | Polysciences                           | [25014-12-4] | C4H5NO2                         | $-CH_2 - CH_3 - CH_3 - CH_2 - CH_2 - CH_3 -$ | 103                                 | 18.7                            | 4.5         | 101.1         |
| Polystyrene (PS)                       | Polysciences                           | [9003-53-6]  | C <sub>8</sub> H <sub>8</sub>   | -CH2-CH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 927                                 | 38.8                            | 0           | 104.15        |
| Isotactic polystyrene                  | Questra                                | [25086-18-4] | C <sub>s</sub> H <sub>s</sub>   | -cH <sub>2</sub> -cH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 880                                 | 39.9                            | 0           | 104.15        |
| Poly(2-vinyl pyridene)                 | Polysciences (MW =<br>200,000-400,000) | [25014-15-7] | C,H,N                           | -cH2-CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 612                                 | 34.7                            | 0           | 105.14        |
| Poly(4-vinyl pyridene)                 | Polysciences<br>(MW = 300,000)         | [25232-41-1] | C <sub>7</sub> H <sub>5</sub> N | -CH <sub>2</sub> -CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 568                                 | 31.7                            | 0           | 105.14        |

552

WALTERS AND LYON

| Material (abbreviated name)                        | Trade name,<br>manufacturer/supplier     | CAS number   | Repeat unit<br>composition        | Repeat unit structure                                                                            | Heat release<br>capacity<br>(J/g K) | Total heat<br>release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
|----------------------------------------------------|------------------------------------------|--------------|-----------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Poly(1,4-phenylene<br>sulfide) (PPS)               | Aldrich                                  | [9016-75-5]  | C <sub>6</sub> H <sub>4</sub> S   | s                                                                                                | 165                                 | 17.1                            | 41.6        | 108.16        |
| Poly( <i>n</i> -vinyl<br>pyrrolidone)              | Polysciences                             | [9003-39-8]  | C <sub>6</sub> H <sub>9</sub> NO  | -CH-CH <sub>2</sub> -                                                                            | 332                                 | 25.1                            | 0           | 111.14        |
| Polycaprolactam                                    | Nylon 6                                  | [25038-54-4] | C <sub>6</sub> H <sub>11</sub> NO |                                                                                                  | 487                                 | 28.7                            | 0           | 113.16        |
| Polycaprolactone                                   | Polysciences                             | [24980-41-4] | $C_6H_{10}O_2$                    |                                                                                                  | 526                                 | 24.4                            | 0           | 114.14        |
| Poly(ethyl<br>methacrylate)                        | Polysciences (MW = 250,000)              | [9003-42-3]  | $C_6H_{10}O_2$                    | -CH <sub>2</sub> -CH <sub>3</sub><br>CH <sub>2</sub> -C<br>C<br>OCH <sub>2</sub> CH <sub>2</sub> | 470                                 | 26.4                            | 0           | 114.14        |
| Poly(ethyl<br>methacrylate)                        | Aldrich (MW =<br>850,000)                | [9003-42-3]  | $C_6H_{10}O_2$                    | СН <sub>2</sub> -СН <sub>3</sub><br>СН <sub>2</sub> -С<br>С<br>ОСН4.СН5                          | 380                                 | 26.8                            | 0           | 114.14        |
| Poly(æ-methyl styrene)                             | Aldrich                                  | [52014-31-7] | C <sub>9</sub> H <sub>10</sub>    | -CH <sub>2</sub> -C                                                                              | 730                                 | 35<br>5.5                       | 0           | 118.18        |
| Poly(2,6-dimethyl 1,4-<br>phenyleneoxide)<br>(PPO) | Noryl 0.4 IV virgin,<br>General Electric | [25134-01-4] | C <sub>8</sub> H <sub>8</sub> O   | CH3                                                                                              | 409                                 | 20                              | 25.5        | 120.15        |
| Poly(4-vinyl phenol)                               | Polysciences (MW = 22,000)               | [24979-70-2] | C <sub>s</sub> H <sub>s</sub> O   | -CH <sub>2</sub> -CH -                                                                           | 261                                 | 27.6                            | 8.          | 120.15        |

**TABLE I** Continued

|                                       |                                      |              | IABL                                         | е I соптииеа                                                                                                         |                                     |                                 |             |               |
|---------------------------------------|--------------------------------------|--------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Material (abbreviated<br>name)        | Trade name,<br>manufacturer/supplier | CAS number   | Repeat unit<br>composition                   | Repeat unit structure                                                                                                | Heat release<br>capacity<br>(J/g K) | Total<br>heat release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
| Poly(ethylene maleic<br>anhydride)    | Polysciences                         | [9002-26-2]  | C <sub>6</sub> H <sub>6</sub> O <sub>3</sub> | $-cH_2$ $CH_2 0$ $0$ $0$ $0$ $0$                                                                                     | 138                                 | 12.1                            | 2.8         | 126.11        |
| Poly(vinyl butyral)                   | Polysciences (MW = 100,000-150,000)  | [63148-65-2] | $C_{s}H_{14}O_{2}$                           | —сн <sub>2</sub> -сн–сн <sub>2</sub> -сн–<br>о, о, о<br>сн<br>сн <sub>2</sub><br>сн <sub>2</sub>                     | 806                                 | 26.9                            | 0.1         | 142.1         |
| Poly(2-vinyl<br>naphthalene)          | Aldrich (MW =<br>175,000)            | [28406-56-6] | $C_{12}H_{10}$                               | -CH2-CH-                                                                                                             | 834                                 | 39                              | 0           | 154.21        |
| Poly(benzoyl 1,4-<br>phenylene)       | POLYX-1000,<br>MAXDEM, Inc.          | [NA]         | C <sub>13</sub> H <sub>s</sub> O             |                                                                                                                      | 41                                  | 10.9                            | 65.2        | 180.21        |
| Poly(ethylene<br>terephthalate) (PET) | Polysciences                         | [25038-59-9] | $C_{10}H_8O_4$                               | -0CH <sub>2</sub> CH <sub>2</sub> OC $-0$ CH <sub>2</sub> CH <sub>2</sub> OC $-0$ CH <sub>2</sub> CH <sub>2</sub> OC | 332                                 | 15.3                            | 5.1         | 192.17        |
| Poly(ether ketone)<br>(PEK)           | P22 (virgin), Victrex<br>USA         | [27380-27-4] | $C_{13}H_8O_2$                               |                                                                                                                      | 124                                 | 10.8                            | 52.9        | 196.2         |
| Polylaurolactam                       | Nylon 12, Polysciences               | [25030-74-8] | $C_{12}H_{23}O$                              |                                                                                                                      | 743                                 | 33.2                            | 0           | 197.32        |
| Poly(styrene maleic<br>anhydride)     | Polysciences                         | [9011-13-6]  | $C_{12}H_{10}O_3$                            |                                                                                                                      | 279                                 | 23.3                            | 5           | 202.21        |

**TABLE I** Continued

554

| Continued |  |
|-----------|--|
| Π         |  |
| BLE       |  |
| TΑ        |  |

| Material (abbreviated<br>name)                         | Trade name,<br>manufacturer/supplier | CAS number    | Repeat unit<br>composition         | Repeat unit structure                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heat release<br>capacity<br>(J/g K) | Total<br>heat release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
|--------------------------------------------------------|--------------------------------------|---------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Poly(acrylonitrile<br>butadiene styrene)<br>(ABS)      | ABS, Polysciences                    | [9003-56-9]   | $C_{15}H_{17}N$                    | CH2-CH-CH-CH-CH-CH3<br>CH2-CH-CH-CH-CH3<br>CH2-CH-CH-CH-CH3<br>CH2-CH-CH-CH-CH3<br>CH2-CH-CH-CH-CH3<br>CH2-CH-CH-CH-CH3<br>CH2-CH-CH-CH-CH3<br>CH2-CH3<br>CH2-CH3<br>CH2-CH3<br>CH2-CH3<br>CH2-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3<br>CH3-CH3-CH3<br>CH3-CH3-CH3<br>CH3-CH3-CH3<br>CH3-CH3-CH3<br>CH3-CH3-CH3<br>CH3-CH3-CH3-CH3-CH3-CH3<br>CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3- | 669                                 | 36.6                            | 0           | 211.31        |
| Poly(1,4-butanediol<br>terephthalate) (PBT)            | Polysciences                         | [26062-94-2]  | $C_{12}H_{12}O_4$                  | -ocH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OC                                                                                                                                                                                                                                                                                                                                                                                                          | 474                                 | 20.3                            | 1.5         | 220.22        |
| Poly(hexamethylene<br>adipamide)                       | Nylon 6/6,<br>Polysciences           | [32131-17-2]  | $C_{12}H_{22}O_2N_2$               | О<br>— NH—(CH,),-NH—C—(CH,),-С—                                                                                                                                                                                                                                                                                                                                                                                                                                               | 615                                 | 27.4                            | 0           | 226.32        |
| Polyazomethine                                         | UMASS                                | [NA]          | $C_{15}H_9N_3$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                  | 8.7                             | 77.8        | 231.26        |
| Poly(1,4-phenylene<br>ether sulfone) (PES)             | BASF Ultrason E1010/<br>Natural BASF | [25667-42-9]  | $C_{12}H_8O_3S$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115                                 | 11.2                            | 29.3        | 232.26        |
| Poly( <i>p</i> -phenylene<br>benzobisoxazole)<br>(PBO) | PBO, Dow Chemical<br>Co.             | [852-36-8]    | $C_{14}H_6O_2N_2$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42                                  | 5.4                             | 69.5        | 234.21        |
| Poly(p-phenylene<br>terephthalamide)                   | Kevlar, Dupont                       | [308069-56-9] | $C_{14}H_{10}O_2N_2$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 302                                 | 14.8                            | 36.1        | 238.25        |
| Poly( <i>m</i> -phenylene<br>isophthalamide)           | Nomex, Dupont                        | [24938-60-1]  | $C_{14}H_{10}O_2N_2$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52                                  | 11.7                            | 48.4        | 238.25        |
| Poly(ethylene<br>naphthylate) (PEN)                    | Eastman Chemical Co.                 | [24968-11-4]  | $C_{14}H_{10}O_4$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 309                                 | 16.8                            | 18.2        | 242.23        |
| Dicyclopentadienyl<br>bisphenol cyanate<br>ester       | XU-71787, Dow<br>Chemical            | [1355-71-0]   | C <sub>17</sub> H <sub>17</sub> NO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 493                                 | 20.1                            | 27.1        | 251.32        |
| Polycarbonate of<br>bisphenol A (PC)                   | Polysciences (MW =<br>32,000–36,000) | [24936-68-3]  | $C_{16}H_{14}O_3$                  | -0 $-0$ $-0$ $-0$ $-0$ $-0$ $-0$ $-0$                                                                                                                                                                                                                                                                                                                                                                                                                                         | 359                                 | 16.3                            | 21.7        | 254.28        |

|                                                      |                                               |               |                                                  | <b>TABLE I</b> Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                 |             |               |
|------------------------------------------------------|-----------------------------------------------|---------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Material (abbreviated name)                          | Trade name,<br>manufacturer/<br>supplier      | CAS number    | Repeat unit<br>composition                       | Repeat unit structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat release<br>capacity<br>(J/g K) | Total<br>heat release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
| Polyphosphazene                                      | Eypel-A, Penn<br>State                        | [NA]          | C <sub>14</sub> H <sub>14</sub> PNO <sub>3</sub> | ocH <sub>2</sub> CH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 204                                 | 21.9                            | 20          | 259.24        |
| Poly(dichloroethyl<br>diphenyl ether)                | Rice University<br>(MW = 9350)                | [NA]          | $C_{14}H_8OCl_2$                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                  | 5.2                             | 57.1        | 263.12        |
| Cyano-substituted<br>Kevlar                          | UMASS                                         | [NA]          | $C_{15}H_9N_3O_2$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54                                  | 9.1                             | 58.3        | 263.26        |
| Bisphenol E<br>polycyanurate                         | AroCy L-10,<br>Ciba<br>Specialty<br>Chamicale | [47073-92-7]  | $C_{16}H_{12}O_2N_2$                             | -n=c-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 316                                 | 14.7                            | 41.9        | 264.28        |
| Bisphenol A<br>polycyanurate                         | AroCy B-10,<br>Ciba<br>Specialty<br>Chemicals | [1156-51-0]   | $C_{17}H_{14}O_2N_2$                             | -N=c-o-O-O-O-C=N-O-c=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N-O-C=N   | 283                                 | 17.6                            | 36.3        | 278.31        |
| Poly(hexamethylene<br>sebacamide)                    | Nylon 6/10,<br>Polysciences                   | [9-99-8006]   | $C_{16}H_{30}O_2N_2$                             | О<br>—NH—(CH <sub>2</sub> ) <sub>6</sub> –NH—C—(CH <sub>2</sub> ) <sub>8</sub> –C—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 878                                 | 35.7                            | 0           | 282.43        |
| Poly(ether ether<br>ketone) (PEEK)                   | 450F, Victrex<br>USA                          | [29658-26-2]  | $C_{19}H_{12}O_3$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155                                 | 12.4                            | 46.5        | 288.3         |
| Poly(siloxytetraalkyl<br>biphenylene oxide)<br>(PSA) | General Electric                              | [NA]          | C <sub>18</sub> H <sub>18</sub> SiO <sub>2</sub> | $-0$ $(H_3$ $(H$ | 119                                 | 15.7                            | 60.1        | 294.42        |
| Poly(ether ketone<br>ketone) (PEKK)                  | G040 (virgin<br>flake),<br>Dupont             | [74970-25-5]  | $C_{20}H_{12}O_3$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96                                  | 8.7                             | 60.7        | 300.31        |
| Tetramethyl bisphenol<br>F polycyanurate             | AroCy M-10,<br>Ciba<br>Specialty<br>Chemical  | [101657-77-6] | $C_{19}H_{18}O_2N_2$                             | $-N=c-0$ $-0$ $-cH_3$ $-0$ $-c=N-0$ $-$ | 280                                 | 17.4                            | 35.4        | 306.36        |

556

WALTERS AND LYON

| Continued |  |
|-----------|--|
| Ι         |  |
| TABLE     |  |

| Material (abbreviated<br>name)          | Trade name,<br>manufacturer/supplier          | CAS number                    | Repeat unit<br>composition                                    | Repeat unit structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Heat release<br>capacity<br>(J/g K) | Total<br>heat release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
|-----------------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Bisphenol C<br>polycarbonate            | BPCPC, General<br>Electric                    | [NA]                          | C <sub>15</sub> H <sub>8</sub> O <sub>3</sub> Cl <sub>2</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29                                  | 3.0                             | 50.1        | 307.13        |
| Polybenzimidazole<br>(PBI)              | CELAZOLE PBI,<br>Hoechst Celanese             | [25928-81-8]                  | $C_{20}H_{12}N_4$                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 36                                  | 8.6                             | 67.5        | 308.34        |
| Poly(hexamethylene<br>dodecane diamide) | Nylon 6/12,<br>Polysciences                   | [26098-55-5]                  | $C_{18}H_{34}N_2O_2$                                          | н<br>— NH—(CH <sub>3</sub> ), – NH—C—(CH <sub>3</sub> ), <sub>1</sub> , – C—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 707                                 | 30.8                            | 0           | 310.48        |
| Bisphenol C,<br>polycyanurate           | BPCCE, Ciba Specialty<br>Chemicals            | [NA]                          | $C_{16}H_8O_2Cl_2$                                            | -N=c-o-O-CO-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-o-c=N-      | 24                                  | 4.2                             | 53.3        | 331.16        |
| Bisphenol A epoxy,<br>catalytic cure    | DER-332, Dow<br>Chemical                      | [001675-54-3]                 | $C_{21}H_{24}O_4$                                             | $-0-CH_{3}$<br>$CH-CH_{3}-0-O-CH_{3}-0-CH_{3}-CH_{3}-O-CH_{3}-CH_{3}-O-CH_{3}-CH_{3}-O-CH_{3}-CH_{3}-O-CH_{3}-CH_{3}-CH_{3}-O-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{3}-CH_{$ | 657                                 | 26.0                            | 3.9         | 340.42        |
| Phenolphthalein<br>polycarbonate        | Dow Chemical                                  | [NA]                          | C <sub>21</sub> H <sub>12</sub> O <sub>5</sub>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58                                  | ∞                               | 49.8        | 344.32        |
| Poly(amide imide)<br>(PAI)              | TORLON 4203L,<br>Amoco                        | [42955-03-3]                  | $C_{15}H_{s}O_{3}N_{2}$                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                                  | 7.1                             | 53.6        | 354.36        |
| Novolac<br>polycyanurate                | Primaset PT-30, Allied<br>Signal XU-371, Ciba | [173452-35-2]<br>[30944-92-4] | $C_{23}H_{15}O_3N_3$                                          | CH2<br>CH2<br>CH2<br>CH2<br>CH2<br>CH2<br>CH2<br>CH2<br>CH2<br>CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 122                                 | 6.6                             | 51.9        | 381.39        |
| Polyimide (PI)                          | Aldrich                                       | [26023-21-2]                  | $C_{22}H_{10}O_5N_2$                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                  | 6.6                             | 51.9        | 382.33        |

|                                               |                                           |               | TAI                                                          | <b>BLE I</b> Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                 |             |               |
|-----------------------------------------------|-------------------------------------------|---------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Material (abbreviated name)                   | Trade name,<br>manufacturer/supplier      | CAS number    | Repeat unit<br>composition                                   | Repeat unit structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heat release<br>capacity<br>(J/g K) | Total<br>heat release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
| Hexafluorobisphenol<br>A polycyanurate        | AroCy F-10, Ciba<br>Specialty Chemicals   | [32728-27-1]  | $C_{17}H_8O_2N_2F_6$                                         | -N = c - 0 $C = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                  | 2.3                             | 55.2        | 386.25        |
| Bisphenol C epoxy                             | BPCE                                      | [NA]          | $C_{20}H_{18}O_4Cl_2$                                        | -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 506                                 | 10                              | 36          | 393.26        |
| 3isphenol M<br>polycyanurate                  | AroCy XU-366, Ciba<br>Specialty Chemicals | [127667-44-1] | $C_{26}H_{24}O_2N_2$                                         | -N=c-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 239                                 | 22.5                            | 26.4        | 396.49        |
| Poly(phenyl sulfone)                          | Radel R5200, Amoco                        | [25839-81-0]  | $C_{24}H_{16}SO_4$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 153                                 | 11.3                            | 38.4        | 400.45        |
| 3isphenol C<br>polyarylate                    | BPCPA, UMASS                              | [NA]          | $C_{22}H_{12}O_4Cl_2$                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                  | 7.6                             | 42.7        | 411.02        |
| 3iphenol phthalonitrile                       | Navy                                      | [NA]          | $C_{28}H_{14}N_4O_2$                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                  | 3.5                             | 78.8        | 438.44        |
| Polysulfone of bisphenol A PSF                | Udel, Amoco                               | [25135-57-7]  | $C_{27}H_{22}O_4S$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 345                                 | 19.4                            | 28.1        | 442.53        |
| aRC-1A                                        | NASA Langley                              | [105030-42-0] | $C_{28}H_{14}N_2O_6$                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33                                  | 6.7                             | 57          | 474.43        |
| Bpoxy Novolac,<br>catalytic cure<br>phenoxy N | DEN-438, Dow<br>Chemical                  | [028064-14-4] | C <sub>10</sub> H <sub>11</sub> O                            | $\bigoplus_{i=1}^{n-1} \operatorname{CH}_{2}^{i} \xrightarrow{i=1}^{n-1} \operatorname{CH}$ | 246                                 | 18.9                            | 15.9        | 474.55        |
| 3isphenol A<br>phthalonitrile                 | U.S. Navy                                 | [NA]          | $C_{31}H_{20}N_4O_2$                                         | n = c'<br>n = c'<br>n = c'<br>n = c'<br>c = n'<br>c = n'<br>c = n'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                                  | 5.9                             | 73.6        | 480.52        |
| Fechnora                                      | Teijin                                    | [NA]          | $\mathrm{C}_{34}\mathrm{H}_{24}\mathrm{N}_{4}\mathrm{O}_{5}$ | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 131                                 | 15.3                            | 41.8        | 568.59        |
| 3isphenol A6F<br>phthalonitrile               | U.S. Navy                                 | [NA]          | $C_{31}H_1{}_4N_4O_2F_6$                                     | $\sum_{n=c'}^{N=c'} 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                   | 2.8                             | 63.8        | 588.46        |

558

WALTERS AND LYON

|                                                                |                                                           |               |                                                 | <b>TABLE I</b> Continued |                                     |                                 |             |               |
|----------------------------------------------------------------|-----------------------------------------------------------|---------------|-------------------------------------------------|--------------------------|-------------------------------------|---------------------------------|-------------|---------------|
| Material (abbreviated name)                                    | Trade name,<br>manufacturer/<br>supplier                  | CAS number    | Repeat unit<br>composition                      | Repeat unit structure    | Heat release<br>capacity<br>(J/g K) | Total<br>heat release<br>(kJ/g) | Char<br>(%) | MW<br>(g/mol) |
| Poly(ether imide) (PEI)                                        | Ultern 1000,<br>General<br>Electric                       | [61128-46-9]  | $C_{37}H_{24}O_6N_2$                            |                          | 121                                 | 11.8                            | 49.2        | 592.61        |
| Polyester of<br>hydroxybenzoic and<br>hydroxynapthoic<br>acids | Vectra C LCP<br>(virgin/unfilled),<br>Hoechst<br>Celanese | [70679-92-4]  | C <sub>39</sub> H <sub>22</sub> O <sub>10</sub> |                          | 164                                 | 11.1                            | 40.6        | 650.6         |
| LaRC-TOR                                                       | NASA Langley                                              | [191985-77-0] | $C_{44}H_{29}N_4O_3P$                           |                          | 135                                 | 11.7                            | 63          | 692.71        |
| LaRC-CP2                                                       | NASA Langley                                              | [79062-55-8]  | $C_{37}H_{18}N_2O_6F_6$                         |                          | 14                                  | 3.4                             | 57          | 700.55        |
| LaRC-CP1                                                       | NASA Langley                                              | [87186-94-5]  | $C_{46}H_{22}N_2O_6F_{12}$                      |                          | 13                                  | 2.9                             | 52          | 926.66        |
| NA = not applicable                                            | e; MW = molecular                                         | weight.       |                                                 |                          |                                     |                                 |             |               |

The rate-independent heat-release capacity is obtained from eq. (6) by the division of the maximum specific heat-release rate by the constant sample heating rate  $[\beta (K/s)]$ :

$$\eta_c \equiv \frac{\dot{Q}_c^{max}}{\beta} = \frac{E}{\beta m_0} \Delta \dot{Q}_2^{max} = \frac{h_c^0 (1-\mu) E_a}{e R T_v^2}$$
(7)

The quantities measured in the test are the initial sample mass and  $\dot{Q}_c$  (W/g). The time integration of the specific heat-release rate gives the total heat released by the complete combustion of the pyrolysis gases per unit of the initial sample mass  $[h_c^0(J/g)]$ .  $\eta_c(J/g K)$  is calculated from the peak specific heat-release rate and the linear heating rate of the sample according to eq. (7). Weighing the sample after the test allows for the calculation of  $\mu$  (g/g) and the average heat of complete combustion per unit mass of volatiles.

#### RESULTS

Pyrolysis–combustion flow calorimeter data for the specific heat-release rates of polyethylene (PE), polypropylene (PP), polystyrene (PS), an acrylonitrile–butadiene–styrene terpolymer (ABS), poly(methyl methacrylate) (PMMA), poly(ethylene terephthalate) (PET), poly(ether ether ketone) (PEEK), and polybenzimidazole (PBI) are shown in Figure 2, having been horizontally shifted for clarity. Dividing the maximum specific heat-release rate (W/g) measured during the test (peak height in Fig. 2) by the constant sample heating rate ( $\beta = 4.3$  K/s in these tests) gives the heat-release capacity of the polymer (J/g K) for materials that thermally decompose in a single step. Materials exhibiting multiple heat-release peaks are beyond the scope of this report and will be addressed in the future.

The measured heat-release capacities for more than 100 polymers with known chemical structures are shown in Table I. These data have been used to generate the group contributions shown in Table II. The molar group contributions were obtained by  $\Psi_i$  being treated as adjustable parameters in the linear system of equations for polymers with known chemical structures and measured  $\eta_c$  values. The optimization calculation continued until the sum of the squares of the relative error between the measured  $\eta_c$  value and the value calculated from group contributions was a minimum. The calculation converged rapidly to the unique  $\Psi_i$  values listed in Table II, which were independent of initial estimates.

Figure 3 is a plot of the calculated and measured heat-release capacities for over 80 polymers for which optimized  $\Psi_i$  values were determined. The correlation coefficient between the measured and predicted heat-release capacities is r = 0.96, and the average relative error is  $\pm 15\%$ .

| Structural group                        | Contribution<br>(kJ/mol K) | Structural group | Contribution<br>(kJ/mol K) | Structural group                       | Contribution<br>(kJ/mol K)        |
|-----------------------------------------|----------------------------|------------------|----------------------------|----------------------------------------|-----------------------------------|
|                                         | 118 <sup>a</sup>           | —Н               | 8.1                        | —OH                                    | -19.8                             |
|                                         | 77.0                       | NH               | 7.6                        | —Br                                    | -22.0                             |
|                                         | 69.5                       |                  | 4.18                       | O<br>∥<br>—C—                          | -22.0                             |
| $\rightarrow$                           | 30.6                       | $CF_2$           | 1.8                        |                                        | -23.2 <sup>a</sup>                |
| CH <sub>3</sub><br>C<br>CH <sub>3</sub> | 29.5                       |                  | 0.1                        | -<br>-<br>-                            | -25.5                             |
| $\rightarrow$                           | 28.8                       |                  | -8.8                       | —Cl                                    | -34.7                             |
| C                                       | 28.3                       | — <del>S</del> — | -10.9ª                     |                                        | -36.4ª                            |
| —[H                                     | 26.6                       | -0               | -11.6                      | 0<br>                                  | Pendant: -39.5<br>Backbone: -13.7 |
| —CH <sub>3</sub>                        | 22.5                       |                  | -13.8                      | —N                                     | -43.0ª                            |
| $\rightarrow$                           | 19.0                       | —NH <sub>2</sub> | -13.9ª                     | C                                      | -49.0                             |
|                                         | 18.7                       | -CF <sub>3</sub> | -14.8                      | <br>Si                                 | -53.5ª                            |
| CH <sub>2</sub>                         | 16.7                       | —C≡N             | -17.6                      |                                        | -66.7                             |
| -\$                                     | 15.1                       |                  | -18.9ª                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -74.5                             |
| C=C                                     | 9.7                        | 0<br>            | -19.2                      |                                        | -76.7                             |

 TABLE II

 Structural Groups and Their Molar Contribution to the Heat Release Capacity

<sup>a</sup> Molar group contribution derived from a single polymer.

## Calculation of the Heat-Release Capacity

The following example illustrates the calculation of the heat-release capacity from molar group contributions for a diglycidyl ether of bisphenol A (BPA epoxy) cured by anionic ring-opening polymerization. This polymer has the following repeat unit chemical structure:



Figure 3 Calculated and measured heat-release capacities for 80 pure polymers.



The polymer repeat unit consists of six basic chemical groups, and the heat-release capacity is calculated from the associated  $N_i$ ,  $M_i$ , and  $\Psi_i$  values for these groups, which are listed in Table III.

The molar heat-release capacity is obtained by the summing of the group contributions according to their molar fraction in the repeat unit and division by the molar mass of the repeat unit to give the heat-release capacity on a mass basis (J/g K).

$$\eta_c = \frac{\Psi}{M} = \frac{\sum_{i}^{i} n_i \Psi_i}{\sum_{i}^{i} n_i M_i} = \frac{\sum_{i}^{i} N_i \Psi_i}{\sum_{i}^{i} N_i M_i} = \frac{204.5 \text{ kJ/mol K}}{340 \text{ g/mol}}$$
$$= 601 \text{ J/g K}$$

The predicted value of 601 J/g K compares reasonably well with the measured value of 657 J/g K for this polymer.

## Heat-Release Capacity and Fire Hazard

The primary indicator of the fire hazard of a material is the heat-release rate in forced flaming combustion.<sup>19</sup> Figure 4 is a plot of the average flaming heat-release rate of samples (10 cm × 10 cm × 0.64 cm, ≈80 g) of pure polymer measured in a fire calorimeter at an external heat flux  $\dot{q}_{ext} = 50 \text{ kW/m}^2$ ) according to standard methods<sup>20–22</sup> versus the measured heat-release capacity. Proportionality is observed between the average flaming heat-release rate of kilogram-size samples and the heat-release capacity of milligram-size samples of the same polymer with a slope of 1.0 (kg/s)/m<sup>2</sup>/K, which is in general agreement with predictions for steady burning at this external heat flux.<sup>5–7</sup>

| Chemical group (i)N $M_i$ (g/mol) $\Psi$ $N_iM_i$<br>(g/mol)(I $\stackrel{1}{-C-}_1$ 11228.312 $\stackrel{1}{-CH}_1$ 21326.626 $\stackrel{1}{-CH}_{2^-}$ 41416.756 $-CH_3$ 21522.530 $\stackrel{-}{-CH}_3$ 27628.8152 |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| $\begin{array}{c ccccc} - & 1 & 12 & 28.3 & 12 \\ - & 1 & 2 & 13 & 26.6 & 26 \\ - & - & 4 & 14 & 16.7 & 56 \\ - & - & 2 & 15 & 22.5 & 30 \\ \hline & & & & & & & & \\ - & & & & & & & & & &$                          | N <sub>i</sub> Ψ<br>J/mol K) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | 28.3                         |
| $+CH_2-$ 4       14       16.7       56 $-CH_3$ 2       15       22.5       30 $-\bigcirc$ 2       76       28.8       152                                                                                            | 53.2                         |
| -CH <sub>3</sub> 2       15       22.5       30 $\checkmark$ 2       76       28.8       152                                                                                                                          | 66.8                         |
| - <u>2</u> 76 28.8 152                                                                                                                                                                                                | 45.0                         |
|                                                                                                                                                                                                                       | 57.6                         |
| <u>-O-</u> 4 16 -11.6 64<br>Total 340                                                                                                                                                                                 | -46.4<br>204.5               |

| TABLE III                                                       |          |              |         |
|-----------------------------------------------------------------|----------|--------------|---------|
| Group Contributions Used in the Calculation of the Heat Release | Capacity | of Bisphenol | А Ероху |

Flame

opagation In Air

**Figure 4** Average flaming heat-release rate (HRR) versus the heat-release capacity for several polymers.

Consequently,  $\eta_c$  is a reasonable predictor of the fire hazard with an empirical correlation (e.g., Fig. 4) or physically based calculations.<sup>5–7</sup>

## Heat-Release Capacity and Flammability

*Flammability* is taken here to mean the tendency of a thin sample of a material ignited by a small flame to continue burning in the absence of external radiant heat after the removal of the ignition source. Self-extinguishing behavior in these tests implies a certain resistance to ignition and/or flame propagation, and standard methods have been developed to measure this characteristic. These flame tests are widely used to rank the burning propensity of combustible solids, but they do not yield any material property information. Two common flammability test methods are the Underwriters Laboratories UL 94 test for upward vertical (V) and horizontal burning (HB)<sup>23</sup> and the critical oxygen concentration for flame extinguishment or limiting oxygen index (LOI) in downward burning.<sup>24</sup>

In flammability tests, the flame heat flux at the sample tip must provide all of the heat energy to continue the burning process after the removal of the Bunsen burner (UL 94) or methane diffusion flame (LOI) used to cause ignition. If the heat flux from the sample surface flame is constant (UL 94 test) or increases in a known way with oxygen concentration (LOI), the criterion for self-extinguishing behavior in these tests can be formulated in terms of a critical heat-release capacity if it is assumed that a minimum heat-release rate of about 100 kW/m<sup>2</sup><sup>25</sup> is needed to sustain flaming combustion. Such an analysis for the UL 94 test<sup>6</sup> indicates that polymers with  $\eta_c$  values lower than about 300 J/g K should self-extinguish because they do not release heat at a high enough rate to overcome heat losses and so the flame cannot propagate. Therefore, for pure polymers with  $\eta_c \leq 300 \text{ J/g}$ K, self-extinguishing behavior in the UL 94 vertical

Figure 6 LOI versus the measured heat-release capacity.

600

Heat Release Capacity (J/g-K)

800

1000

1200

400

50

45

40

35

30

25

20

15

10 L 0 Non-Propagating In Air

200

Oxygen Index

test (a V rating) is expected. Figure 5 contains UL 94 data<sup>26</sup> and measured heat-release capacities for several pure polymers. A transition from a self-propagating (HB) flame behavior to a self-extinguishing (V-0) flame behavior occurs in the vicinity of  $\eta_c = 300 \text{ J/g K}$ , as predicted from the critical heat-release-rate criterion.

The criterion for self-extinguishing behavior in the LOI test must take into account the fact that an increase in the oxygen concentration of the flowing gas stream in the test chamber increases the temperature (radiant heat flux) of the sample diffusion flame and, therefore, the amount of thermal energy deposited in the polymer. Because the heat-release rate of the sample increases with the flame heat flux, which in turn increases with oxygen concentration, an inverse relationship between  $\eta_c$  and the limiting oxygen concentration is expected and observed, as shown in the LOI data<sup>1,27,28</sup> plotted versus  $\eta_c$  in Figure 6.

**Figure 5** UL-94 ratings versus the measured heat-release capacities of pure polymers.





Comparing Figures 5 and 6 shows that self-extinguishing behavior in the UL 94 vertical test occurs at a lower heat-release capacity ( $\eta_c = 300 \pm 100 \text{ J/g K}$ ) than in the LOI test ( $\eta_c = 550 \pm 100 \text{ J/g K}$ ) underambient conditions (298 K, LOI = 21% O<sub>2</sub>). The reason for this is that the upward burning UL 94 test is more severe than the downward burning LOI test because of convective and radiative preheating of the sample by its flame and so requires more material fire resistance (lower heat-release capacity) for self-extinguishing behavior under ambient conditions.

## CONCLUSIONS

The heat-release capacity is a physically based material property that is a good predictor of the fire behavior and flammability of pure polymers. The heat-release capacity is simply calculated for pure polymers from their chemical structures with additive molar group contributions that have been determined empirically with a high level of confidence ( $\pm 15\%$ ). The proposed methodology for predicting the fire behavior and flammability of polymers from their chemical structures allows for the molecular-level design of ultra-fire-resistant polymers without the expense of synthesizing and testing new materials.

The authors are indebted to Stanislav I. Stoliarov of the University of Massachusetts (Amherst, MA) for performing the optimization calculations for the molar group contributions to the heat-release capacity. Certain commercial equipment, instruments, materials, or companies are identified in this report to adequately specify the experimental procedure. This in no way implies endorsement or recommendation by the Federal Aviation Administration.

### References

- Van Krevelen, D. W. Properties of Polymers, 3rd ed.; Elsevier: Amsterdam, 1990.
- 2. Bicerano, J. Prediction of Polymer Properties, 2nd ed.; Marcel Dekker: New York, 1996.
- Coleman, M. M.; Graf, J. F.; Painter, P. C. Specific Interactions and the Miscibility of Polymer Blends; Technomic: Lancaster, PA, 1991.
- Bensen, S. W. Thermochemical Kinetics, Methods for the Estimation of Thermochemical Data and Rate Parameters; Wiley: New York, 1968.

- Lyon, R. E. In Fire Retardancy of Polymeric Materials; Wilkie, C. A.; Grand, A. F., Eds.; Marcel Dekker: New York, 2000.
- Lyon, R. E.; Walters, R. N. Proceedings of the Fire and Materials 2001 Conference, San Francisco, CA; Interscience Communications Limited: London, England, 2001, pp 285–300.
- 7. Lyon, R. E. Fire Mater 2000, 24, 179.
- Walters, R. N.; Lyon, R. E. Proc Int SAMPE Symp Exhibition 1997, 42, 1335.
- Walters, R. N.; Lyon, R. E. NISTIR 5904, Beall, K., ed.; National Institute of Standards and Technology, Annual Conference on Fire Research: Book of Abstracts, October 28–31, 1996, Gaithersburg, MD, 1996, pp 89–90.
- 10. Lyon, R. E.; Walters, R. N. U.S. Pat. 5,981,290 (1999).
- 11. Walters, R. N.; Lyon, R. E. PMSE Prepr 2000, 83, 86.
- Walters, R. N.; Lyon, R. E. The 2000 Conference on Flame Retardancy of Polymeric Materials; Business Communications Corporation: Norwalk, CT, 2000.
- 13. Thornton, W. Philos Mag J Sci 1971, 33, 196.
- 14. Hugget, C. Fire and Materials, 1980, 61.
- Janssens, M.; Parker, W. J. In Heat Release in Fires; Babrauskas, V.; Grayson, S. J., Eds.; Elsevier Applied Science: London, 1992; Chapter 3, p 31.
- 16. Walters, R. N.; Hackett, S. M.; Lyon, R. E. Fire Mater 2000, 24, 245.
- 17. Inguilizian, T. V. M.S. Thesis, University of Massachusetts, 1999.
- 18. Lyon, R. E. Polym Degrad Stab 1998, 61, 201.
- 19. Babrauskas, V.; Peacock, R. D. Fire Safety J 1992, 18, 255.
- Hirschler, M. M. In Heat Release in Fires; Babrauskas, V.; Grayson, S., Eds.; Elsevier Applied Science: New York, 1992; p 207.
- 21. Scudamore, M. J.; Briggs, P. J.; Prager, F. H. Fire Mater 1991, 15, 65.
- Lyon, R. E.; Gandhi, S.; Walters, R. N. Proceedings of the Society for the Advancement of Materials and Process Engineering (SAMPE) 44th International Symposium and Exhibition; SAMPE: Covina, CA, 1999.
- 23. Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances, Underwriters Laboratory: UL 94, 4th ed.; Underwriters Laboratories: Research Triangle Park, NC, 1991.
- 24. Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics; ASTM D2863; American Society for Testing and Materials: Philadelphia, PA, 1991.
- Tewarson, A. SFPE Handbook of Fire Protection Engineering, 2nd ed.; Society of Fire Protection Engineers: Boston, MA, 1995; Section 3, p 53.
- Plastics Digest, Ranked Properties Reference Indexes; D.A.T.A. Business Publishing: Englewood, CO, 1996, 17(1), 773.
- 27. Cullis, C. F.; Hirschler, M. M. The Combustion of Organic Polymers; Oxford University Press: Oxford, 1981.
- Hilado, C. J. Flammability Handbook for Plastics, 5th ed.; Technomic: Lancaster, PA, 1998.